Das Brennglas des Martin Schrettinger

23. August 2010 um 20:08 2 Kommentare

Im 1829 erschienenen 2. Band des „Versuch eines vollständigen Lehrbuches der Bibliothek-Wissenschaft“ habe ich unter der Zwischenüberschrift „Ist also alles systematisieren unnütz und zweckwidrig?“ ein schönes Zitat von Martin Schrettinger gefunden:

Ein systematischer Katalog wäre demnach einer optischen Maschine zu vergleichen in welcher alle Arten von Brenngläsern nach den Graden ihrer Konvexität nach den Verhältnissen ihrer Dimensionen und ihrer mehr oder minder Zirkel oder länglicht runden oder eckigten Form in Gestalt eines Stammbaumes über und neben einander systematisch geordnet und in dieser Ordnung befestigt wären oder wenn man lieber will einem Universal-Brennglase in welchem so viele Unterabtheilungen in systematischer Ordnung eingeschliffen wären dass durch die selben alle erdenklichen Grade von Brennpunkten erzielt werden sollten.

Ab dem zweiten Band plädierte Schrettinger wie bereits Albrecht Christoph Kayser in „Ueber die Manipulation bey der Einrichtung einer Bibliothek und der Verfertigung der Bücherverzeichnisse“ (1790) gegen einen systematischen Katalog, da dieser immer nur eine Sicht darstellen könne. Dass es einmal ein „Universal-Brennglase“ geben würde, durch das sich alle erdenklichen Grade von Brennpunkten erzielen lassen, konnte er sicher nicht ahnen. Mit etwas Fantasie lässt sich Martin Schrettinger nicht nur als Vorreiter des Social Tagging sondern auch von Linked Data (d.h. der beliebigen Rekombinierbarkeit von Katalogbestandteilen) ansehen.

Schrettinger und Kayser konnten sich unter den Bibliothekaren jedoch nicht durchsetzen – stattdessen dominierte Friedrich Adolf Ebert die weitere Entwicklung in Deutschland. Mehr zur frühen Geschichte des Katalogs findet sich bei Uwe Jochum, u.A. in „Die Idole der Bibliothekare“ (1995), Kapitel 3. Gut, dass sich viele von Jochums Texten trotz seiner Kritik an Open Access frei im Netz finden lassen (Weshalb – wie er argumentiert – durch die freie Verfügbarkeit von Publikationen die Forschungsfreiheit gefährdet sein soll, habe ich bislang nicht verstanden. Ich denke ab dieser Stelle findet sich eine Antwort im Eigentumsbegriff, über den sich an anderer Stelle streiten lässt).

P.S: Ein schöner Verriss von Schrettingers Handbuchs gab es in der Jenaischen Allgemeinen Literaturzeitung vom April 1821. Der Rezensent kritisiert (zu Recht), wie sich Schrettinger bezüglich des systematischen Katalogs selbst widerspricht.

William Kent: Ein weiterer Seelenverwandter?

28. April 2010 um 01:52 1 Kommentar

Bei meinen Recherchen zu Datenmodellierung etc. bin ich über Lambda the Ultimate auf den 2005 verstorbenen Computerwissenschaftler William (Bill) Kent gestoßen. Er hat 1978 ein Buch über „Data & Reality“ geschrieben hat und ebenso wie der von mir sehr geschätze Ted Nelson scheint Kent vom „Informatik-Establishment“ nicht genügend rezipiert zu werden. Die meisten von Kent’s Texten sind auf seiner ehemaligen Homepage verfügbar.

In The Many Forms of a Single Fact zeigt Kent beispielsweise, wie sich eine Aussage im relationalen Datenmodell in dutzenden Varianten ausdrücken lässt. Ich bin sicher im RDF-Datenmodell ist das alles gaaanz anders und das Problem gleiche Information – unterschiedliche Daten löst sich in Luft auf 😉 Die Ignoranz (oder der Fatalismus) der Mainstream-Informatik-Forschung gegenüber der dahinter liegenden fundamentalen Begrenzung technischer Systeme ist einer der Gründe, warum ich lieber in der Informationswissenschaft promoviere. Kent schreibt:

“The questions aren’t so much about how we process data as about how we perceive reality, about the constructs and tactics we use to cope with complexity, ambiguity, incomplete information, mis­matched viewpoints, and conflicting objectives”.

Dazu fällt mir Lotfi A. Zadeh, der Erfinder der Fuzzy Logik ein. Die erste Anwendung der Fuzzy Logik auf Datenbanken stammt übrigens von Maria Zemankova, die auch im Bereich Digitaler Bibliotheken forscht. Aber zurück zu Kent: Diese Notiz von ihm über Bücher verdeutlicht, warum ich über die Modellierung von bibliographischen Daten schreibe 🙂

“It takes a good system and a lot of work to keep track of books.
[…] Books hold our universe, past, present, and future, and other universes, too.”.

Mit Ted Nelson hat William Kent meinem Eindruck nach gemeinsam, dass beide jahrzentelang aus verschiedenen Blickrichtungen gegen die Begrenztheit von vorhandenen Computersysteme angeschrieben haben. Man vergleiche beispielsweise Nelsons „The Tyranny of the File“ (1986, siehe dazu hier) und Kents „Limitations of Record Based Information Models“ (1979).

Wer sich weniger mit konkreten Strukturen der Datenverwaltung beschäftigen möchte aber das trotzdem alles irgendwie interessant findet: Passende Bücher sind Sorting Things out von Geoffrey Bowker und Susan Leigh Star sowie Everything is Miscellaneous von David Weinberger.

Was sind eigentlich Daten?

19. April 2010 um 22:19 8 Kommentare

P.S: Inzwischen habe ich einen Aufsatz zur Frage dieses Blogartikels veröffentlicht: Jakob Voß (2013): „Was sind eigentlich Daten?“. In: LIBREAS. Library Ideas, 23 (2013). http://libreas.eu/ausgabe23/02voss/


Adrian Pohl ist in seinem Blog auf meinen in Zwickau gehaltenen Vortrag Semantic Web und Linked Data eingegangen (der Videomitschnitt des Vortrags ist noch nicht online, aber die Vortragsfolien) – vielen Dank für das Feedback!

Definitionen von Daten

In der ersten Hälfte des Vortrags ging es mir darum zu erklären, was überhaupt Daten sind. Meine Kurzdefinition, die Adrian in seinem Beitrag auseinander nimmt ist:

Daten: Strukturen aus unterscheidbaren Zeichen, die aufgrund von Vereinbarungen Informationen darstellen

Dem setzt er folgende Definition entgegen (Hyperlinks wie im Original):

Daten sind für mich in erster Linie eine Menge unterschiedener und unterscheidbarer, syntaktisch strukturierter Token, die gespeichert sind und transportiert und kopiert werden können. Syntax in diesem Sinne setzt Digitalität (d.h. eine endliche Menge klar abgegrenzter Typen) voraus und damit ist Digitalität auch Voraussetzung für Daten.

Zum Vergleich hier noch die aktuelle Definition (19 April 2010 16:22 UTC) aus Wikipedia:

The term data means groups of information that represent the qualitative or quantitative attributes of a variable or set of variables. [en.wikipedia]

Daten sind logisch gruppierte Informationseinheiten […], die zwischen Systemen übertragen werden oder auf Systemen gespeichert sind. [de.wikipedia, 19 April 2010 16:22 UTC]

Kurze Analyse der Definitionen

Die Definitionen aus beiden Wikipedias halte ich für haltlos (Was heisst „logisch gruppiert“? Warum basieren Daten auf einer „variable“?) – sie zeigen allerdings, wie eng der Datenbegriff oft an den Informationsbegriff gekoppelt wird. Im Falle der Wikipedia-Definitionen, die Daten praktisch als eine Aggregat von Information(seinheiten) auffassen, ist diese Kopplung aber viel zu eng. Ich denke hier würde mir Adrian rechtgeben, da er schreibt „Nach meinem Dafürhalten […] stellen Daten keine Information dar, wenn sie auch gespeicherte Information sein mögen.“ Nach einer Trennung des Begriffs in einen rein syntaktischen Teil (siehe seine Definition oben), auf welchen aufbauend ein „aufnehmen“, „erfassen“ oder „verstehen“ zu Informationen möglich ist, schlägt er in Abwandlung meiner Definition vor:

Daten: Syntaktisch geordnete Mengen von Token, in denen Information gespeichert ist

Ich halte diese Definition für ebenso problematisch, da unklar ist was eine „syntaktisch geordnete Menge“ sein soll und da Informationen nicht objektiv in Daten „gespeichert“ sind sondern erst aufgrund von Vereinbarungen als Informationen interpretiert werden. Von der Aussage her – so denken ich – liegen Adrian und ich jedoch nicht weit auseinander. Man könnte zugespitzt sagen, dass wir uns nicht über die Daten einig sind (wie soll die Definition lauten) aber über die Information (was soll die Definition bedeuten).

Daten als Strukturen

Der Begriff „Token“ zur Definition der Bestandteile von Daten ist vielleicht besser als „Zeichen“ und ich möchte Adrian ausdrücklich für den Hinweis auf den Unterschied zwischen Token und Type danken. Voraussetzung für Daten ist die Möglichkeit einer Unterscheidung. Erstens ist notwendig zu unterscheiden, wo ein Token anfängt und endet, um überhaupt „Mengen“ identifizieren zu können. Zweitens setzen Daten die Möglichkeit voraus, dass zwei Token identisch – also eine Type – sind. Zusätzlich ist es notwendig, dass die Token in einer Struktur angeordnet sind, zum Beispiel eine Reihenfolge. Ich würde sogar fast soweit gehen, die Definition auf „Daten sind Strukturen“ zu verkürzen, weil Strukturen aus unterscheidbaren Elementen bestehen. Diese Definition blendet jedoch – auch in ausführlicherer Form wie zum Beispiel als „Daten sind strukturierte Mengen unterscheidbarer Elemente“ – den Begriff der Information völlig aus.

Informationen

Ohne Daten kann es keine Informationen geben. Der Philosoph Luciano Floridi – vermutlich der renommierteste Experte auf dem Gebiet der Informationsphilosophie – bezeichnet diese Annahme als Ontological Neutrality. Obgleich umgekehrt Daten möglicherweise ohne Informationen existieren können (darüber wäre zu diskutieren) finde ich es angemessen bei der Definition von Daten direkt auf Informationen zu verweisen. Bei der Definition von Information beziehe ich mich auf die von Floridi dargestellte General Definition of Information (GDI). In Is Information Meaningful Data? fasst er diese Definition zusammen und argumentiert, dass (semantische) Information zusätzlich wahr sein muss. Diese Annahme ist umstritten, während die GDI eine stabilere Grundlage bietet. Demnach ist etwas Information genau dann wenn:

  1. es aus einem oder mehreren Daten besteht
  2. die Daten wohlgeformt (syntaktisch korrekt) sind
  3. die wohlgeformten Daten eine Bedeutung (Semantik) besitzen

Im Rahmen meiner Dissertation beschäftige ich mich damit, wie die Beziehung zwischen Daten, Wohlgeformtkeit und Bedeutung in der Praxis hergestellt wird. Wie ich in Libreas skizziert habe, sind dabei die Begriffe Format und Modell hilfreich. Auf das Modell, welches meiner Meinung nach notwendig ist, um aus Daten bedeutungsvolle Informationen zu lesen (aufnehmen, erfassen, verstehen…) verweise ich in meiner Definition mit der „Vereinbarung“. Die Vereinbarung muss implizit oder explizit als Hintergrundwissen, Kontextinformation, given information, Exformation o.Ä. vorliegen, um Daten interpretieren zu können – denn prinzipiell kann ein gegebenes Datum sehr viele verschiedene Informationen enthalten.

Digitalität und Wissen

Auf den Begriff der Digitalität möchte ich hier erstmal nicht weiter eingehen – finite Strukturen sind immer digital kodierbar also ist Digitalität nicht Voraussetzung sondern Folge von Daten. Und was Wissen ist weiß ich auch nicht: es hängt jedenfalls sehr davon ab, was man vom Wissensbegriff wissen möchte 😉 Hinweisen möchte ich aber auf die Zitatesammlung mit weiteren Definitionen von Daten von Beat Döbeli Honegger und auf den schon oben verlinkten Artikel Semantic Conceptions of Information von Luciano Floridi. Und natürlich freue ich mich sehr über weitere Kommentare!